RICM2 - 2004/05

Langage et Programmation 2

Manipulation de listes

Exercice 1: Longueur d’une liste
Décrire une fonction qui a une liste de caractéres associe la longueur de cette
liste.

Spécification
long : une liste de caractéres — un entier

Relations de récurrence

long([])=0
long(e.l)=1+long(l)

Caml
let rec liste nba liste = match liste with
]->0
(e : :1) -> 1+long(l)

Exercice 2: Nombre d’occurrences
Décrire une fonction qui a une séquence de caractére associe le nombre de "
a " de cette séquence.

Spécification
nba : une liste de caractéres — un entier

Relations de récurrence
nba([])=0
nba(e.l)=(si e="a’alors1 sinon0)+long(1)

Caml
let rec nba 1 = match 1 with
->0
|(x : :11) -> (if x—"a’ then 1 else 0) + nba 11;

Exercice 3: Concaténation
Décrire une fonction qui a deux listes de caractéres associe la concaténation



de ces deux listes.

Spécification
concat : deux listes de caractéres — une liste de caractéres

Relations de récurrence
concat([],12)=12
concat(el.11’,12)=el.concat(11’,12)

Caml
let rec concat 11 12 = match 11 with
[->12
|(x : :xs ) -> (x : :concat xs 12);

Preuve de ’associativité de la concaténation
P(11)=V 12, L3, 11@Q(12@13)=(11@l2)@l3
Montrer V 11, P(11)

= :
@(12@13)—(12@13)~12@13 (1)
(J@12)al3=(12)al3=12a13 (2)
De (1) et (2) on déduit que [J@(12@13)=([]@]12)QI3 (3)

x 1
On suppose P(11)
(x ::11)@(12@l3)=x : :((11)@(12@l3))=x : :(I11@(12@13)) (4)
((x : :11)@l2)@l3=x : :((11)Ql2)@l3)=x : :((11@]2)QI3) (5)
De (4), (5) et P(11) on déduit que (x : :11)@(12Q13)=((x : :11)Ql2)@l3
(6)

Par récurrence on déduit de (3) et (5) V 12, L3, P(11)

Exercice 4: Inversion
Décrire une fonction qui a une liste de caractéres associe 'inverse de cette
liste.

Spécification
inv : une liste de caractéres — une liste de caractéres



Relations de récurrence

inv (=[]

inv(el.ll)=inv(l1)oel

Version 1
Caml
let rec inv = function
[]-> 1]
| (e ::]) -> inv 1@ [e];
Version 2
Caml
let rec invaux acc liste — match liste with

] -> acc

| (e ::1) -> invaux (e : :acc) 1;
let rev liste =

invaux liste [|;

Passage de la version 1 a la version 2

P(l)=V a, invaux(l,a)=inv(l)Qa
Montrer V 1, P(1)

1=]] :
invaux(a,[])=a et inv([])Qa=a
donc invaux([],a)=inv([].a) (1)

e@] :
On suppose P(1)
invaux(e@l,a)=invaux(e@a,l)
et (inv(l)Qe)@a=inv(l)@Q(e@a)
or V a, invaux(l,a)=inv(l)@a
donc invaux(e@la)=inv(l)Q(e@a) (2)

Par récurrence on déduite de (1) et (2) P(1)=V a, invaux(l,a)=inv(l)@a



Autres exercices possibles

— Egalité de deux listes

— Une liste ordonnée

— Extraction du n iéme élément

— Appartenance a une liste

— Palindrome

— Interclassement de deux listes triées
— Anagramme



