
RICM2 - 2004/05
Langage et Programmation 2

Manipulation de listes

Exercice 1: Longueur d'une liste
Décrire une fonction qui à une liste de caractères associe la longueur de cette
liste.

Spéci�cation
long : une liste de caractères → un entier

Relations de récurrence
long([])=0
long(e.l)=1+long(l)

Caml
let rec liste nba liste = match liste with

[] -> 0
|(e : :l) -> 1+long(l)

Exercice 2: Nombre d'occurrences
Décrire une fonction qui à une séquence de caractère associe le nombre de "
a " de cette séquence.

Spéci�cation
nba : une liste de caractères → un entier

Relations de récurrence
nba([])=0
nba(e.l)=(si e='a'alors1 sinon0)+long(l)

Caml
let rec nba l = match l with

[] -> 0
|(x : :l1) -> (if x='a' then 1 else 0) + nba l1 ;

Exercice 3: Concaténation
Décrire une fonction qui à deux listes de caractères associe la concaténation

1



de ces deux listes.

Spéci�cation
concat : deux listes de caractères → une liste de caractères

Relations de récurrence
concat([],l2)=l2
concat(e1.l1',l2)=e1.concat(l1',l2)

Caml
let rec concat l1 l2 = match l1 with

[] -> l2
|(x : :xs ) -> (x : :concat xs l2) ;

Preuve de l'associativité de la concaténation
P(l1)=∀ l2, L3, l1@(l2@l3)=(l1@l2)@l3
Montrer ∀ l1, P(l1)

l1=[] :
[]@(l2@l3)=(l2@l3)=l2@l3 (1)
([]@l2)@l3=(l2)@l3=l2@l3 (2)

De (1) et (2) on déduit que []@(l2@l3)=([]@l2)@l3 (3)

x : :l1 :
On suppose P(l1)
(x : :l1)@(l2@l3)=x : :((l1)@(l2@l3))=x : :(l1@(l2@l3)) (4)
((x : :l1)@l2)@l3=x : :((l1)@l2)@l3)=x : :((l1@l2)@l3) (5)
De (4), (5) et P(l1) on déduit que (x : :l1)@(l2@l3)=((x : :l1)@l2)@l3

(6)

Par récurrence on déduit de (3) et (5) ∀ l2, L3, P(l1)

Exercice 4: Inversion
Décrire une fonction qui à une liste de caractères associe l'inverse de cette
liste.

Spéci�cation
inv : une liste de caractères → une liste de caractères

2



Relations de récurrence
inv([]=[]
inv(e1.l1)=inv(l1)oe1

Version 1

Caml
let rec inv = function

[] -> []
| (e : :l) -> inv l @ [e] ;

Version 2

Caml
let rec invaux acc liste = match liste with

[] -> acc
| (e : :l) -> invaux (e : :acc) l ;

let rev liste =
invaux liste [] ;

Passage de la version 1 à la version 2

P(l)=∀ a, invaux(l,a)=inv(l)@a
Montrer ∀ l, P(l)

l=[] :
invaux(a,[])=a et inv([])@a=a
donc invaux([],a)=inv([].a) (1)

e@l :
On suppose P(l)
invaux(e@l,a)=invaux(e@a,l)
et (inv(l)@e)@a=inv(l)@(e@a)
or ∀ a, invaux(l,a)=inv(l)@a
donc invaux(e@l,a)=inv(l)@(e@a) (2)

Par récurrence on déduite de (1) et (2) P(l)=∀ a, invaux(l,a)=inv(l)@a

3



Autres exercices possibles
� Egalité de deux listes
� Une liste ordonnée
� Extraction du n ième élément
� Appartenance à une liste
� Palindrome
� Interclassement de deux listes triées
� Anagramme

4


