
The AMF Architecture in a
Multiple User Interface Generation Process

Kinan Samaan, Franck Tarpin-Bernard
Laboratoire ICTT, Lyon

21, Av. Jean Capelle, 69621 Villeurbanne cedex - FRANCE
kinan@ictt.insa-lyon.fr, franck.tarpin-bernard@insa-lyon.fr

ABSTRACT
In the context of Multiple User Interface (MUI)
generation, this paper presents the AMF architecture on
which a method relies for the adaptation of interactive
applications to the specific characteristics of a targeted
context. In our model-based approach, we use a library of
task patterns and interaction patterns to adapt the
interaction model of the application.
For the description of AMF architecture, we use an XML
file that ensures the link between the tasks model and the
functional core of the application. An engine parses and
processes the file to run the application.

Keywords
Multiple User Interface, design patterns, model-based,
AMF, XML based language.

INTRODUCTION
Everyday, new platforms are emerging with new
characteristics and new interaction capabilities. The
traditional classification (PC, mobile phone, PDA,
interactive TV…) is not sufficient to generate MUI for
interactive applications. We must not propose the same
interface for a PDA with a small coloured screen and a
keyboard and another one with a larger screen and a stick.
These last years, many researches have been led on
Multiple User Interface (MUI) generation processes. The
model-based approaches seem to be the most promising.
In classical software engineering, models like MVC [4]
have been exploited for a long time. Recently, user
models or task models have been introduced to help for
the generation of MUI. Whereas these models can be
easily described with XML, it is not the case with MVC.
According to us, it is very important to be able to also
model with a portable file the interaction model.
Indeed, the interaction model is one of the most important
models to consider because, on the one hand, it manages
the interaction between the user and the application, and
on the other hand, it ensures the link with the functional
core of the application. This model was often neglected in
the steps of MUI generation.

In this paper, we present the basis of a new approach that
integrates the interaction model and the platform model
into the design and generation processes.
The adaptation process forces the designer to
clarify/explain the links between the task model, the
interface model and interaction model. For the description
and the adaptation of the interaction model, our approach
relies on the AMF architecture (Agent with Multiple
Facets), which has been created in 1997 for modelling
common interactive applications [12]. Indeed, AMF
presents the following advantages that will be deeply
discussed:
• The multi-facets concept is very interesting

especially for multiple presentation definitions.
• The XML description of AMF models allows the

definition of an abstract interaction model and
patterns of interaction.

• A run-time engine is able to execute an AMF model
and allows switching dynamically from a specific
model or sub-model to another.

RELATED WORKS
To design and implement MUI [9] interactive software,
the first approaches were based on description languages
like UIML [1] and XIML (RedWhale) [15]. These
languages organize adaptation processes in two levels or
steps: an abstract level and a concrete level corresponding
to the implementation in HTML, Java or WM. If this
approach certainly represents a progress, we think that the
proposed abstractions are still insufficiently generic.
Mainly it imposes a particular style of interaction, i.e. this
abstract level specifies, for example, a button that will be
concretised under different forms (aspect, position, etc.),
but mandatory imposes the use of button while neglecting
the other forms of interaction more adapted for a given
platform as the vocal recognition or use of physical
button. In this way, abstract level is portability oriented
and not plasticity [9] oriented.
Newer approaches try to define a component-based
framework that will allow runtime migratable user
interfaces, which are independent of the target software
platform, the target device and the interaction modalities
[5]. In these frameworks, the user interfaces are merely
considered as a presentation of a single service or of more
functionally grouped services. These kinds of solutions
are more powerful than the language-based ones but, as

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

they do not use task models, they are not able to filter the
functions that cannot be used in a specific context.
Other approaches mainly focus on the task model [7][11].
They filter a generic task model in order to define an
abstract user interface and later build a concrete user
interface. The Abstract user interface is described in terms
of Abstract Interaction Objects (AIOs) [14] that are latter
transformed into Concrete Interaction Objects (CIOs)
once a specific target has been selected. Calvary et al.
defined a unifying reference framework for multi-target
user interfaces [2]. This framework tries to give a global
view of the multiples approaches on MUI.
The improvement is important. However, these methods
do not explicitly define an interaction model. As a
consequence, they are very efficient for modelling basic
interactions but are limited for modelling more
sophisticated ones like “drag and drop”. Currently they
are dedicated to graphical interaction and need to be
extended to manage multimodal and multi-style
interactions.
THE GENERAL APPROACH OF MUI GENERATION
To allow a more important variation at the interaction
style level as well as at the implementation level, it is
necessary to introduce a richer and generic description
and to replace the language-based approach by an
architecture-based approach [10]. In the AMF approach,
we propose to start with a task model and to map it to an
architecture-based abstract interaction model expressed in
AMF, then to concretise this one in relation to the
characteristics of the working platform. Once the concrete
interaction have been chosen, the degrees of freedom
available allow an ultimate adaptation to the user and the
environment.
Our approach consists in organizing the MUI generation
process in 4 phases (Fig 1):
• Abstract application definition phase,
• Interaction styles selection phase,
• Concrete interface generation phase,
• Final adaptation phase.

The first phase consists in modelling the generic task
model and the abstract interface model, and defines the
links between these two models and the abstract
interaction model of the application. The designer builds
these models once for all.
The second phase aims at dynamically generating the
components of the interface that are adapted to the target.
This phase is activated when a target (that is a triple
< user, environment, platform > [13]) is running the
software. The process consists in transforming the
previous models with an adaptation engine. For the
adaptation, this engine considers two extra components:
the platform model and a library of task and interaction
patterns.
We can summarize the work of the adaptation engine in
three points:
• It removes non-realizable tasks from the generic

task model (e.g. removes a “print” task if the system
does not detect a printer connected to the target). At
this stage the engine also removes the elements of
the abstract interface that are closely related to the
removed tasks.

• According to the input devices of the target, the
mechanism replaces each abstract task by a concrete
task using a “task patterns” library (e.g. moving
element with a pointing device).

• In parallel, the engine enriches the XML description
of abstract interaction model by inserting the
patterns that are associated to the task patterns using
an “interaction patterns” library.

The third phase aims at generating a concrete interface
where all the resources that will be used are selected but
where the final parameters (layout, colour, volume…) are
not set.
According to the characteristics of the devices (size,
resolution, capacity…) and the user preferences, a second
engine selects among potential resources for each element
of the semi-concrete interface, the ones that are more
appropriate to the circumstances of use. The dependencies
that have been defined between the domain objects are
considered so that the choices are coherent.

Presentatio n
Resources

Presentation
Classes

Interaction
Styles

Selection
Engine

Functional Core
Classes

Abstract
Interface

Model

Generic
Tasks
Model

Abstract
Interaction

Model

Context
Model

Semi-
concrete
Interface
Model

Specific
Tasks
Model

Semi-
concrete

Interaction
Model

Concrete
Interface
Model

Tasks
Model

Concrete
Interaction

Model

Guideline
Table Patterns

Presentatio n
Resources

Presentation
Classes

Final
Interface

Tasks
Model

Interaction
Model

Data

U
P

E

Context
Model U

P

E

Context
Model U

P

E

Concretization
Engine

Finalization
Engine

Guideline
Table

Functional Core
Classes

Data

Presentation
Resources

Presentation
Classes

Functional Core
Classes

Data

Functional Core
Classes

Data

Presentation
Resources

Presentation
Classes

Figure 1.
Our vision of
the complete
process of MUI
generation

In the final adaptation, the application and especially its
interface takes its final form. A third engine is building
the final layout of the interface taking into account the
presentation preferences described in the context model.
Let’s focus now on the core of our approach, which is the
AMF model.
BASIC DESCRIPTION OF AMF
A large number of architectures for Interactive Software
have been described, e.g., MVC (Model-View-Controller)
[4], PAC (Presentation-Abstraction-Controller) [3], ADC
(Abstraction-Display-Controller) [6]. Most of these
architectures are based on the traditional view of
interactive software, namely the view that an interactive
software system can be separated into the application and
the user interface. The application part contains the
functionality of the software and the user interface part
contains the representation of this functionality proposed
to the application user(s).
AMF is a multi-agents and multi-facets architecture
model that specifies the software architecture of an
interactive application. It enables the design of reusable
elements. It can be extended and adapted to the need of
specific applications. The AMF model can be seen as an
upgrade of the PAC and MVC models. It combines the
conceptual powerfulness of multi-agents architectures
such as PAC while providing an operational
implementation schema, which is a key factor of the
success of MVC.
Fundamentally, AMF provides four key features:
• It generalizes the concept of facet, extending their

number from 3 in both MVC and PAC to n, i.e. an
open-ended set of useful facets (e.g. Cooperation in
CSCW);

• It formalizes the control components;
• It fits well with task modelling approaches and

design patterns;
• It defines an API and relies on a powerful runnable

engine.

AMF provides a graphical formalism that represents the
structure and specifies the temporal sequence of
processes. Finally, a Java implementation of an AMF
engine enables the execution of an AMF model coupled
to applicative classes.
The class ‘agent’ is the basic component of AMF models.
Each agent is made of facets and control administrators. It
can imply other agents. Each class agent can generate
several instances. Each facet incorporates logical
communication ports and is associated to an applicative
class where some functions, called «daemons», are
mapped to the ports.
AMF proposes a unified formalism to model control
components because such formalisms are rare and usually
difficult to use in real contexts (see Petri nets for

instance). Yet, these components are the major pieces of
architectural models and it is of great importance to
provide an efficient modelling tool. The control
component of each agent is its main part because it
manages all the communications between the facets of the
agent and other agents. AMF defines 2 kinds of elements:
• At the Facet level, communication ports present the

services that are offered by the facet and the ones
that are needed (respectively input and output
ports).

• At the Agent level, control administrators are
connecting communication ports. These
administrators can easily be standardized (OR,
AND, Sequence, etc.) and extended to handle
complex controls such as multi-user synchronization
or interaction tracking.

Interactive Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

A1

A2

Facets

Input Ports
Control Administrators

Output Ports

Figure 2. Basic elements of AMF architecture

We briefly introduce 2 special features of the control
administrators:
• After being activated, a target port is always

returning a message to the source port. This
“acknowledgement” message is generally ignored
but it can be used to return data to the source port.
When it is the case, the control administrator is
represented with a black triangle (see figure 3a).

• The possible existence of multiple instances of a
unique class drove us to provide a default
mechanism that broadcasts messages from a control
administrator to the target ports of all the instances
of an agent. To be able to activate a specific
instance of an agent, we add an optional parameter
to the activate function in order to explicitly define a
target agent. The identity of the agent is usually
known only during runtime. So we do not need a
new type of administrator but only a new activation
technique. Yet, for a better understanding of the
visual model, our advice is to add a little vertical bar
at the end of the administrator to explain that a
filtering is done on the target agents (see figure 3b).

 Filter Message Return Message

(a) (b)

Figure 3. Return and Filter features of control administrators.

Finally, a Java implementation of an AMF engine enables
the execution of an AMF model coupled to applicative
classes.
The AMF Model can be published using an XML
notation. Here is the Document Type Definition we use:
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Agent (Agent*, Administrator+, Facet+)>
<!ATTLIST Agent
 Name CDATA #REQUIRED
 Sub-agent CDATA #REQUIRED
 Type CDATA #REQUIRED
>
<!ELEMENT Administrator (Sources+, Targets+)>
<!ATTLIST Administrator
 Name CDATA #REQUIRED
 Type (Simple | Return | Filter | ReturnFilter | Sequence)
#REQUIRED
 TypeAC (Abstract | Concrete) #REQUIRED
>
<!ELEMENT Targets EMPTY>
<!ATTLIST Targets
 Name CDATA #REQUIRED
>
<!ELEMENT Sources EMPTY>
<!ATTLIST Sources
 Name CDATA #REQUIRED
>
<!ELEMENT Facet (Port+)>
<!ATTLIST Facet
 Name CDATA #REQUIRED
 Type CDATA #REQUIRED
>
<!ELEMENT Port EMPTY>
<!ATTLIST Port
 Name CDATA #IMPLIED
 Type CDATA #REQUIRED
 TypeIO (2 | i | o) #REQUIRED
 TypeAC (Abstract | Concrete) #REQUIRED
 DaemonName CDATA #REQUIRED
 FacetName CDATA #REQUIRED
>

The AMF Engine
The goals of the AMF are to help design, implementation,
use and maintenance. Our approach consists in combining
both multiagent view (like PAC) and layered view (like
Arch). The multiagent view is used during the design and
a layered technology is used for implementation.
Actually, agents are dual entities: one part located into the
AMF engine manages the control of the interactions while
another one, on the application side, manages both
widgets for interactivity and real domain-dependent
abstractions.
The 5 levels of Arch model are present:

Application
Abstraction

Application
Presentation AMF Engine

Control

AbstractionPresentation

Figure 4. The Layers of the AMF implementation

To implement AMF architecture, we built an engine that
manages all the AMF objects (agents, facets, ports and
administrators) and their communications. The external
elements, which are both objects that define the functional
kernel of the application and objects that use a graphical
toolkit, are linked to the AMF objects. For instance, each
communication port is associated to a function called
daemon in the Application side. This daemon is
automatically triggered when the port is activated.
At runtime, for each user’s action (button pressed, menu
selection…), the corresponding event received by an
application object (i.e. the one that manages the window)
activates an output port of the associated AMF agent in
the engine (symbol in the graphical models). At the
end of the control processing, input ports are activated
and their daemons are run.
AMF concepts can be compared to ones of Java Beans.
Indeed, facets are components (Beans) that are able to
present themselves (with their ports) and that
communicate by sending and receiving messages. Ports
and administrators are very similar to listeners and
adapters (in fact, the Java implementation of AMF uses
them). However, AMF relies on a sophisticated engine so
that programmers can use predefined components, such as
standard administrators, which are real objects and not
only java interfaces.

ElementElementElementAgent B

Presentat
i

Presentation Abstra
i

Abstraction

Presentat
i

Other

ElementElementElementAgent A

Presentat
i

Presentation Abstra
i

Abstraction

Profile

A
abstraction

A
Presentation

Engine Architecture Application Architecture

A
profile

B
abstraction

B
Presentation

B
Other

Figure 5. Links between AMF objects inside the engine
and application classes outside.

THE AMF DESCRIPTION OF AN ABSTRACT
INTERACTION MODEL
To illustrate our approach, we are considering a classical
game called «The Towers of Hanoi » (figure 6), which
consists in moving rings of different sizes to reach a goal.
The rings are stacked up on three stems; they have an
initial position and should be moved to reach a target-

position. The shifting must respect the following rules:
only one ring can be moved at a time and a ring with a
given size cannot be placed upon a ring of a smaller size.
There are three types of object in this application: the
game which contains the rule and the other objects, the
stem (with three instances) upon which the rings are
slipped and the ring (with 3 to 5 instances according to
the complexity of the game). The interaction consists in a
succession of operations: the selection of the ring (on the
top of a stem) followed by the shifting, then the validation
of the move (respect rule) and finally, the detection of the
end of the game.

1 2 3

Figure 6. “The Towers of Hanoi”application

The first step for the designer consists in defining a
generic task model. The Task Model is a tasks tree that is
hierarchically organized. Various formalisms have been
proposed to model the task model. We use the CTT
notation and CTTE editor [9] for its description and
modeling. In our approach, the Generic task model
contains regular nodes corresponding to common tasks
and abstract nodes that will be "specialized" later in
relation with the context of use (e.g. a “Selection&Move”
node that will be specialized by a “Drag & Drop” sub-
tree). Figure 7 presents the Generic task model of “The
Towers of Hanoi” using a CTT notation.

Figure 7. Generic Task Model of “The Towers of Hanoi”

From the generic task model we can establish the abstract
interaction model of the application. This model is an
AMF description that contains abstract ports. These ports
represent functionalities that can be executed differently
according to the specifications of the target.

Figure 8 represents the abstract interaction model of “The
Towers of Hanoi” game. After a move, if it is a valid one
(Validate_move ports), the scene must be re-painted
(Refresh ports). The task of selecting and moving a ring
in this model is abstract (elements are represented with
dotted lines). Indeed, this action can be carried out
differently according to the means of interaction that are
available on the given target: a mouse, then the user may
drag & drop, or a keyboard, then he/she will type the
number of the source stem and after the target stem’s one.
To skip from an abstract interaction model to a concrete
model, we need to replace abstract ports using the
patterns.

GameGame

PresentationPresentation

ExitExit

Abstraction Abstraction

Get_PosGet_Pos

Validate_moveValidate_move

RefreshRefresh

StemStemStemStem

PresentationPresentation RingRingRingRing

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

Test_SelectTest_Select

Test_MoveTest_Move

RefreshRefresh

Refresh_AllRefresh_All

Validate_moveValidate_move

Refresh_AllRefresh_All

RefreshRefresh

Selection

& Move

Selection

& Move
Selection

& Move

Selection

& Move

Selection

& Move

Get_PosGet_Pos

ExitExit

Selection

& Move

Selection

& Move

Selection

& Move

Figure 8. Abstract Interaction Model of “The Towers of
Hanoi”

Here is an extract of the XML description of the AMF
abstract model for the “Towers of Hanoi” application. We
only detail the Ring agent. Note that the
“selection_move” port is an abstract port. In addition, the
names of the elements are rich (“#” symbols are used by
the engine) so that we can use dynamic links.
<?xml version="1.0" encoding="UTF_8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="GAME" Sub-agent="1" Type="game">
 <Agent Name="STEM" Sub-agent="1" Type="stem">
 <Agent Name="RING" Sub-agent="0" Type="ring">
 …
 <Administrator
 Name="Test_Select#RING#STEM#GAME"
 Type="Return" TypeAC="Abstract">
 <Sources
 Name="Selection_Move#PRESENT#RING#STEM#GAME"/>
 <Targets
 Name="Test_Select#ABSTR#RING#STEM#GAME"/>
 </Administrator>
 <Facet Name="ABSTR#RING#STEM#GAME"
 Type="abstr#ring#stem#game">
 <Port
 Name="REFRESH#ABSTR#RING#STEM#GAME"
 Type="refresh#abstr#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="ABSTR#RING#STEM#GAME"
 DaemonName="refresh"/>
 <Port
 Name="TEST_MOVE#ABSTR#RING#STEM#GAME"
 Type="test_move#abstr#ring#stem#game" TypeIO="2"

 TypeAC="Concrete"
 FacetName="ABSTR#RING#STEM#GAME"
 DaemonName="test_move"/>
 …
 <Port
 Name="Refresh_all#PRESENT#RING#STEM#GAME"
 Type="refresh_all#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="refresh_all"/>
 <Port
 Name="Selection_Move#PRESENT#RING#STEM#GAME"
 Type="selection_move#present#ring#stem#game"
 TypeIO="i" TypeAC="Abstract"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="null"/>
 </Facet>
 </Agent>
 …
</Agent>

THE INTERACTION PATTERNS
The AMF model is a part of the «design patterns»
approach because some combinations of agents – facets –
ports constitute potential patterns that can be isolated and
described.
Thus, we have defined several patterns related to
interaction means (mouse, keyboard…) that are used to
interact with the application in different contexts. For
sure, other patterns may be defined.
As an example we present hereafter an interaction pattern
used for a task of selection and removal of an element
among a set of elements located into a container (Fig 9).
This pattern is applied if the interaction is done with a
mouse.

ContainerContainerContainerContainer

PresentationPresentation ElementElementElementElement

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

RefreshRefresh

Refresh_AllRefresh_All

MoveMove

Test_MoveTest_MoveDropDropDrop

SelectionSelectionSelection
Test_SelectTest_Select

MoveMove

UpUp

Mouse
Up

Mouse
Move

Mouse
Down

DownDown

RefreshRefresh

Validate_moveValidate_move

Figure 9. The graphical “Select and Move” Pattern for
a mouse.

For this pattern we have the following XML description:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="CONTAINER" Sub-agent="1" Type="container">
 <Agent Name="ELEMENT" Sub-agent="0" Type="element">
 <Administrator Name="Refresh#ELEMENT#CONTAINER"
 Type="Simple" TypeAC="Concrete">

 <Sources
 Name="REFRESH#ABSTR#ELEMENT#CONTAINER"/>
 <Targets
 Name="REFRESH#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 …
 <Facet Name="PRESENT#ELEMENT#CONTAINER"
 Type="present#element#container">
 …
 <Port
 Name="MOVE#PRESENT#ELEMENT#CONTAINER"
 Type="move#present#element#container" TypeIO="i"
 TypeAC="Concrete"
 FacetName="PRESENT#ELEMENT#CONTAINER"
 DaemonName="Move"/>
 <Port
 Name="SELECTION#PRESENT#ELEMENT#CONTAINER"
 Type="selection#present#element#container" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#ELEMENT#CONTAINER"
 DaemonName="Selection"/>
 </Facet>
 </Agent>
 <Administrator Name="Refresh#CONTAINER" Type="Simple"
 TypeAC="Concrete">
 …
 <Administrator Name="Move#CONTAINER" Type="Filter"
 TypeAC="Concrete">
 <Sources Name="MOVE#PRESENT#CONTAINER"/>
 <Targets
 Name="MOVE#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 <Administrator Name="Drop#CONTAINER" Type="Filter"
 TypeAC="Concrete">
 <Sources Name="UP#PRESENT#CONTAINER"/>
 <Targets
 Name="DROP#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 <Administrator Name="Selection#CONTAINER"
 Type="ReturnFilter" TypeAC="Concrete">
 <Sources Name="DOWN#PRESENT#CONTAINER"/>
 <Targets
 Name="SELECTION#PRESENT#ELEMENT#CONTAINER"/>
 </Administrator>
 …
 <Facet Name="ABSTR#CONTAINER" Type="abstr#container">
 <Port Name="GET_POS#ABSTR#CONTAINER"
 Type="get_pos#abstr#container" TypeIO="i"
 TypeAC="Concrete" FacetName="ABSTR#CONTAINER"
 DaemonName="Get_pos"/>
 <Port Name="VALIDATE#ABSTR#CONTAINER"
 Type="validate#abstr#container" TypeIO="2"
 TypeAC="Concrete" FacetName="ABSTR#CONTAINER"
 DaemonName="Validate"/>
 </Facet>
 …
</Agent>

INTERACTION MODELS ADAPTATION
The adaptation engine replaces the abstract tasks with a
concrete task and the interaction pattern that is related to
the task is inserted into the abstract interaction model of
the application. This replacement is done according to the
characteristics of the target. Hence, concrete ports and
concrete administrators will replace the abstract ports that
are inside the abstract interaction model.

A name-based approach is used to replace the generic
names (CONTAINER & ELEMENT) by the concrete
ones (STEM & RING).
If we consider the Towers of Hanoi example running on a
platform with a mouse, the pattern presented in the figure
9 will be instanced. A name-based rule enables to
maintain the link between the ports and the interface
element that receives the action. Then, the pattern
replaces the abstract ports in the interaction model of the
application. This process produces a final interaction
model of the application (figure 10).

GameGame

PresentationPresentation

Get_PosGet_Pos

Abstraction Abstraction

Get_PosGet_Pos

Validate_moveValidate_move

RefreshRefresh

StemStemStemStem

PresentationPresentation RingRingRingRing

PresentationPresentation Abstraction Abstraction

Get_PosGet_Pos

Refresh_PresRefresh_Pres

Validate_moveValidate_move

Abstraction Abstraction

Get_PosGet_Pos

RefreshRefresh

Refresh_AllRefresh_All

Validate_moveValidate_move

Refresh_AllRefresh_All

RefreshRefresh

MoveMove

UpUp

Mouse
Up

Mouse
Move

MoveMove

Test_MoveTest_MoveDropDropDropMouse
Down

DownDown

DownDown

SelectionSelectionSelection
Test_SelectTest_Select

MoveMove

UpUp

ExitExit

Mouse
Down

ExitExit

Figure 10. Concrete interaction model of the Towers of
Hanoi with a mouse

Here is an extract of the XML description of the AMF
concrete model for the application. The DaemonName
fields of the concrete ports are method names of the Java
classes defined by the developer.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Agent SYSTEM "amf.dtd">
<Agent Name="GAME" Sub-agent="1" Type="game">
 <Agent Name="STEM" Sub-agent="1" Type="stem">
 <Agent Name="RING" Sub-agent="0" Type="ring">
 <Administrator Name="Refresh#RING#STEM#GAME"
 Type="Simple" TypeAC="Concrete">
 <Sources
 Name="Refresh#ABSTR#RING#STEM#GAME"/>
 <Targets
 Name="Refresh#PRESENT#RING#STEM#GAME"/>
 </Administrator>
 <Administrator
 Name="Refresh_all#RING#STEM#GAME"
 Type="Simple" TypeAC="Concrete">
 <Sources
 Name="Test_Move#ABSTR#RING#STEM#GAME"/>
 <Targets
 Name="Refresh_all#PRESENT#RING#STEM#GAME"/>
 </Administrator>
 …

 <Port
 Name="DROP#PRESENT#RING#STEM#GAME"
 Type="drop#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"

 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Drop"/>
 <Port
 Name="MOVE#PRESENT#RING#STEM#GAME"
 Type="move#present#ring#stem#game" TypeIO="i"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Move"/>
 <Port
 Name="SELECTION#PRESENT#RING#STEM#GAME"
 Type="selection#present#ring#stem#game" TypeIO="2"
 TypeAC="Concrete"
 FacetName="PRESENT#RING#STEM#GAME"
 DaemonName="Selection"/>
 </Facet>
 </Agent>
…
 </Agent>
…
</Agent>

The DaemonName fields of the concrete ports are method
names of the Java classes defined by the developer. Here
is the interface of the RingPres class.
// File : iRingPres.java
public interface iRingPres
{
 void Refresh();
 void Refresh_All();
 private Down(MouseEvent arg);
 private Move(MouseEvent arg);
 private Drop(MouseEvent arg);
}
// iRingPres

CONCLUSION
In this paper we have shortly presented an architecture-
based approach for the generation of Multiple User
Interfaces. It incorporates the use of task patterns and
interaction patterns. To describe the interaction model and
the interaction patterns we used the AMF architecture
which is composed of an XML description of an AMF
model and a run-time engine.
We use AMF to define the interaction model, which
enables us to obtain an abstract description of the
interaction model of the application. Processing (filtering
and enriching) this description with the XML parsing
mechanisms helps us to concretize the abstract model in a
progressive way. At the end of the process, we obtain a
concrete description of the AMF interaction model. A
Java implementation of an AMF engine enables the
execution of an AMF model coupled to applicative
classes. We can now imagine building other AMF players
(non-java) that will allow the application to the AMF-
XML files.

This approach is original in the sense that it tries to unify
the task model, the interaction model and the resources of
the application, i.e. the functional resources (Java classes
of the application domain) and interaction resources
(images, menus…).
The designer has to specify the task model, the interaction
model, the java classes (which ensure the various
interaction styles) and the presentation resources. The
system analyses these elements and, using interaction
guidelines and patterns, it maps filtered elements on the
resources.
We are aware of the difficulties and limits in considering
the definition of a process that is wholly automatic. The
complexity of the problem requires simplifications that
inevitably lead to stereotyped and non-adapted interfaces
to the specificity of materials. The introduction of the
adapted task patterns and the interaction ones may
decrease the complexity of the issue. However, it is
obvious that the contribution of the designer should take
place in this type of process. In this context, we will
consider the introduction of a constraint definition file.
The designer defines this file, which is used to restrict the
modifications upon some elements during the process of
the dynamic generation of the concrete interface.

REFERENCES
1. Abrams M., Phanouriou C., Baeongbacal A. L., Williams

S. M., Shuster J.E., "UIML: An Appliance-Independent XML
User Interface Language," In Computer Networks, Vol. 31,
1999, pp. 1695-1708.

2. Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon
L., Vanderdonckt J. A unifying reference framework for
multi-target user interfaces, Journal of Interacting With
Computer, Elsevier Science B.V, June, 2003, Vol 15/3, pp
289-308.

3. Coutaz J.: PAC, an Object Oriented Model for Dialog
Design, in Proceedings Interact'87, North Holland, 1987,
pp.431-436.

4. Krasner G.E., Pope S.T. A Cookbook For Using the
Model-View-Controller User Interface Paradigm in The

Smalltalk-80 System. Journal of Object Oriented
Programming, 1988, 1, 3, pp. 26-49.

5. Luyten K., Van Laerhoven T., Coninx K., Van Reeth F.,
«Runtime transformations for modal independent user
interface migration». Interacting with Computers. Vol. 15,
No. 3, June 2003. pp. 329–347.

6. Markopoulos P, Johnson P. Rowson J. Formal architectural
abstractions for interactive software. International Journal of
Human Computer Studies, Academic Press, (1998), 49, pp.
679-715.

7. Mori G., Paternò F., Santoro C. « Tool Support for
Designing Nomadic Applications» Proceedings of IUI 2003,
Miami, Florida, January 12-15, 2003.

8. Paternò F., Model-based Design and Evaluation of
Interactive Applications. Springer-Verlag, November 1999.

9. Seffah, A., Radhakrishan T., Canals G. Workshop on
Multiples User Interfaces over the Internet: Engineering and
Applications Trends. IHM-HCI: French/British Conference
on Human Computer Interaction, September 10-14, 2001,
Lille, France.

10. Samaan K., Tarpin-Bernard F. « L’Utilisation de Patterns
d’Interaction pour l’Adaptation d’IHM Multicibles ».
IHM'03, CAEN-FRANCE, novembre 2003.

11. Souchon N., Limbourg Q., Vanderdonckt J. Task Modeling
in Multiple Contexts of Use. In Proceedings of DSVIS’2002
Workshop. 2002.

12. Tarpin-Bernard F., David B.T., AMF : un modèle
d’architecture multi-agents multi-facettes. Techniques et
Sciences Informatiques. Hermès. Paris. Vol. 18. No. 5. p.
555-586. Mai 1999.

13. Thevenin, D., Coutaz, J. Plasticity of User Interfaces:
Framework and Research Agenda. In Proceedings of
INTERACT'99, 1999, pp. 110-117.

14. Vanderdonckt, J., Bodart, F., 1993. Encapsulating
knowledge for intelligent automatic interaction objects
selection. In: Ashlund, S., Mullet, K., Henderson, A.,
Hollnagel, E., White, T. (Eds.), Proceedings of the ACM
Conference on Human Factors in Computing Systems
InterCHI’93 Amsterdam, 24–29 April 1993), ACM Press,
New York, pp. 424–429.

15. XIML Forum Site Web. http://www.ximl.org.

