
AMF : a new design pattern for complex interactive software ?

F. Tarpin-Bernard, B.T. David

Lab. GRACIMP, ICTT Research group, Ecole Centrale de Lyon,
36 av. Guy de Collongue, 69131 Ecully, France
Email: tarpin@ec-lyon.fr, david@ec-lyon.fr

INTRODUCTION

An appropriate architectural model should fulfill three main objectives. Firstly, it organizes
software structure to improve implementation, portability and maintenance. Secondly, it helps
identify the functional components (e.g. MVC [1]), which is essential during analysis and
design process. Its third role is to help the understanding of a complex system, not only for
designers, but also for end-users. The architectural model is one of the three key elements
needed to achieve efficient and good developments: methods - models - tools.
This paper presents AMF (French acronym for MultiFaceted Agent) an architectural model
for interactive software which fulfills all these objectives. AMF is a generic and flexible
model that can be used with design and implementation tools. It includes a graphical
formalism that expresses the structures of software, and a run-time model that allows dynamic
control of interactions.
The current trend in software engineering is to build handbooks of design patterns. Patterns
help developers share architectural knowledge, help people learn a new design paradigm or
architectural style, and help new developers avoid traps and pitfalls traditionally learned only
by costly experience. Therefore, a new technique can be documented as a pattern, but its value
is know only after it has been tried. The longer a pattern has been used successfully, the more
valuable it tends to be [2].
AMF is a relatively new model that has been implemented in C++ and tested only on few
applications. However, we consider that it contains all the requirements needed to become a
real design pattern. That is the reason why, we want to present it following the guidelines
proposed by Gamma* [3], as if it was already an improved design pattern.

1. AMF: A DESIGN PATTERN

Intent: The AMF approach structures interactive software in a set of multifaceted agents.
Each agent is composed of facets that communicate through control administrators. AMF
authorizes dynamic evolution of all its components.

* In this paper, we often refer to Gamma’s works. In particular, we briefly compare parts of AMF to Gamma’s
design patterns. As we cannot develop here these comparisons, the reader should refer to [3] to better understand
the interest of these related patterns.

Motivation
Multiagent models organize an interactive system in sets of agents which collaborate to
realize the man - machine dialogue. Most of them use agents composed of three components
mapped on the HCI paradigm (presentation to the user, functional core, and control of the
interaction). These models present two main lacks:

1. They use macroscopic facets combining different thematic functions ;
2. They provide very few mechanisms to express interaction control and dynamics ;

Applicability
Use the AMF pattern when you build complex interactive software, heterogeneous software
(using several programming languages), or dynamic software (in terms of interaction rules).

Structure

Port_Name
Facet_Name
Data_Type
Active
Send(Msg)
Receive(Msg)

Agent

Name
Add(Facet)
Remove(Facet)
Add(Admin)
Remove(Admin)
Add(Portadm)
Remove(Portadm)
Export(Portadm)
ActivateAdmins()
Send(Msg)
Receive(Msg)
CallTarget(Msg)

Facet

Name
Add(Port)
Remove(Port)
Activate(Portname, Generic)
Send(Msg)
Receive(Msg)
Daemon0(Generic)
Daemon1(Generic)
...

Administrator

Name
AddSource(PortAdm)
RemoveSource(PortAdm)
AddTarget(PortAdm)
RemoveTarget(PortAdm)
Run(Msg)
SourcesActivated?()
Translate(Msg)

admins

agent

agent

facets

Derived Agents

Composite Agent

Add(Agent, Family)
Remove(Agent, Family)
Add(Family)
Remove(Family)

Derived Composite Agents

Derived Facets

ports

facet

Port

Name
TheDaemon
Daemon(Generic)

PortO

Daemon(Generic)

components

parent

PortI

Daemon(Generic)

PortIO

Daemon(Generic)

Derived

Admin.

Iterative

Active()

Conjonctive

Active()

PortAdm

portadms

agent

sources

targets

Msg

DestPort_Name
DestFacet_Name
DestAgent_Name
Data

e.g.: TheDaemon = facet::Daemon0

Daemon(Generic) {TheDaemon(Generic) ;} Generic is a
generic data type

(e.g.: void* in C++)

msg

portadmexports

Figure 1: an OMT-based representation of AMF structure

Participants
The agents are organized according composition rules so that an agent can contain several
other agents (application of the COMPOSITE pattern of Gamma [3]). A root agent contains
all the agents of the system. Each agent is composed of a various number of facets. These
facets can be similar to the classical components of PAC model [4] or come either from a
finest split of control component, or from the identification of new characteristics of agents
(e.g.: management of the user model), or from duplication of classical facets (several
"presentation" facets). For instance, we can identify the following facets: "presentation" (I/O
relations with the user), "abstraction" (logical data - functional core), "evaluation" (capture of
the user’s actions), "help" (contextual and on-line helps linked to a user model)...
Furthermore, AMF expresses interaction control with two kinds of components:

1. Each facet presents several communication ports (allowing inputs, outputs or both). These
ports avoid to have a permanent binding between a service and its implementation.
Moreover, it is possible to realize the body of the functions in heterogeneous languages.
This technique looks like the BRIDGE pattern of Gamma [3].

2. The control is composed of port administrators (elements that store references on the
communication ports of the facets) and control administrators (components that manage
unidirectional links between several port administrators).

A control administrator has three roles:
1. To connect: managing logical relations between the communication ports (sources S and

targets T) that are connected to it;
2. To translate: transforming the messages that come from the source ports in messages

understandable by target ports. According to the translation technique, we distinguish
transferring, corresponding, assembling, computing and processing administrators. This
technique looks like the ADAPTER pattern of Gamma [3];

3. To express behavior (see MEDIATOR and STRATEGY patterns [3]): specifying
activation conditions and doing extra work (e.g. communicate with other entities in a
cooperative context). According to the different conditions, we identified administrators
called: simple (if S is activated then activate T), conjunctive (if S1 and S2 then T),
disjunctive (if S1 or S2 then T), sequence (if S1, S2 then T), iterative (if n*S then T)...

Collaborations
When a facet needs to use a distant service, it activates its corresponding output port. This
port builds a message and sends it to its associated daemon (see figure 1). Then, the control
facet of the owner agent wakes up all the control administrators which are connected to this
source port. If this port is exported (connected to other agents), the activation is recursively
transmitted to the parent agents. Then, each concerned administrator considers its activation
conditions (see behavioral role). If these conditions are validated, the message is translated
and sent to all the target ports. The activation of these ports runs their associated daemons.
Actually, the control administrators are not directly linked to the communication ports. They
are linked to administrator ports which are kinds of string references of communication ports.
These administrator ports are used to route messages and to introduce a large flexibility : at
each moment, you can exchange two facets if theirs ports have the same names.

Other sections
We will not develop the other technical sections introduced by Gamma to describe design
patterns, i.e. consequences (largely evoked before), implementation (details of C++ classes)
and sample code, known uses (examples developed in our laboratory) and related patterns.

2. A GRAPHICAL FORMALISM

AMF proposes a very powerful graphical formalism which helps understand complex
systems. This formalism is used as a design tool by editors and builders. It represents agents
and facets with overlapped boxes, communication ports with rectangles which contain the
associated services, and control administrators with symbols which express their behavior.
To briefly introduce this formalism, figure 2 shows the modeling of an elementary interaction.
Generally, two administrators manage the relations between an action starting from the
Presentation facet and the associated command defined in the Abstraction facet. In another
situation, A1 could be replaced by an iterative administrator if several activations are
necessary to run the action.

Interactive Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

Control

A1

A2

The symbol represents an output port that can be activated by the user (ex: via a mouse click).

Figure 2: An interaction on a single-user agent modeled with AMF.

CONCLUSION

We presented a new multifaceted multiagent architectural model for complex interactive
software. This model, AMF, is not only a conceptual model with a very useful graphical
formalism, but also a guide of implementation which provides mechanisms of interaction and
builder tools (C++ [6]). Currently used to model various applications like schedulers or CAD
editors, AMF is a very interesting model for the evaluation of interactions. The definition of
new facets lets us imagine new uses. For instance, we extend AMF for groupware design. For
these reasons, we consider that AMF could become a design pattern as defined by Gamma.

REFERENCES

[1] G.E. Krasner & S.T. Pope, A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3) 26-49,
Aug. 1988.
[2] D.C. Schmidt, M. Fayad & R.E. Johnson, Software patterns, Communication of the ACM,
39 (10) 37-39, Oct. 1996.
[3] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Dessign Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, Mass. 1995.
[4] J. Coutaz, Architecture Models for interactive software: Failures and Trends, in
Engineering for HCI, G. Cockton Ed., Elsevier Science Publ., 137-153, 1990.
[6] F. Tarpin, Architectures logicielles pour le travail coopératif, PhD ECL, France, 1997.

